Wavelet speech enhancement based on time-scale adaptation
نویسندگان
چکیده
We propose a new speech enhancement method based on time and scale adaptation of wavelet thresholds. The time dependency is introduced by approximating the Teager Energy of the wavelet coefficients, while the scale dependency is introduced by extending the principle of level dependent threshold to Wavelet Packet Thresholding. This technique does not require an explicit estimation of the noise level or of the apriori knowledge of the SNR, as is usually needed in most of the popular enhancement methods. Performance of the proposed method is evaluated on speech recorded in real conditions (plane, sawmill, tank, subway, babble, car, exhibition hall, restaurant, street, airport, and train station) and artificially added noise. MELscale decomposition based on wavelet packets is also compared to the common wavelet packet scale. Comparison in terms of Signal-to-Noise Ratio (SNR) is reported for time adaptation and time-scale adaptation thresholding of the wavelet coefficients thresholding. Visual inspection of spectrograms and listening experiments are also used to support the results. Hidden Markov Models Speech recognition experiments are conducted on the AURORA–2 database and show that the proposed method improves the speech recognition rates for low SNRs.
منابع مشابه
A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملA new approach for wavelet speech enhancement
We propose a new approach to improve the performance of speech enhancement techniques based on wavelet thresholding. First, space–adaptation of the threshold is obtained by extending the principle of the level–dependent threshold to the Wavelet Packet Transform (WPT). Next, the time–adaptation is introduced using the Teager Energy Operator (TEO) of the wavelets coefficients. Finally, the time–s...
متن کاملWavelet-Based Speech Enhancement Using Time-Frequency Adaptation
Recommended by Satya Dharanipragada Wavelet denoising is commonly used for speech enhancement because of the simplicity of its implementation. However, the conventional methods generate the presence of musical residual noise while thresholding the background noise. The unvoiced components of speech are often eliminated from this method. In this paper, a novel algorithm of wavelet coefficient th...
متن کاملA Time-Frequency Adaptation Based on Quantum Neural Networks for Speech Enhancement
In this paper, we propose a novel wavelet coefficient threshold (WCT) depended on both time and frequency information for providing robustness to non-stationary and correlated noisy environments. A perceptual wavelet filter-bank (PWFB) is firstly used to decompose the noisy speech signal into critical bands according to critical bands of psycho-acoustic model of human auditory system. The estim...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Speech Communication
دوره 48 شماره
صفحات -
تاریخ انتشار 2006